
PUMPING FROM DEEP HOLES:

DEVELOPING

OPTIMIZED HYDRAULIC DESIGNS

Graz, 10. April 2024

Senior Engineer

Stefan.Hoeller@JabergundPartner.com

Stefan Höller
Partner / 

VP Engineering and Product Development

a.limanowka@oildynamics.de

Andy Limanowka



PUMPING FROM DEEP HOLES:  DEVELOPING OPTIMIZED HYDRAULIC DESIGNS
10. April 2024

-2-

Typical Geothermal Installation - String Diagram
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Typical Geothermal Installation

Casing size:

10-3/4” with liner or, 

9-5/8” without liner

Maximum acceptable pump diameter 7.7”

8.75” pumps are too large

6.75” pump cannot deliver required 

flow rate (36000BPD max)

Required production rates:

winter 45000-50000BPD / 82.8-92[l/s]

summer 15000-20000BPD / 27.6-36.8[l/s]

Production zone at 3000-4000m from surface

Pump landed at 600-1000m from surface
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Pumps Available from Competition
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Initial Situation / Task / Goal

Hydraulic Specifications (n = 3500 rpm)

• Expected head per stage at BEP 25m

• Flow rate at BEP 298m3/h or 45,000bpd

• Expected efficiency at BEP would be close to 80%

• Continuously rising pump head is a must.

Pump must be stable in whole range from

no flow to no head conditions. 

• No specifications concerning cavitation provided

Design specifications:

• Diffuser overall diameter [OD]

must not bigger than 7-1/2” (190.5mm)

• Max. wet diameter Da to 172mm
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Sudden jumps in flow rate can be described by multiple 

intersections of the pump head curve and the system 

resistance curve

Instability 

region of the 

pump head 

curve

System curve crosses the instability region:

multiple intersections at different flow rates possible

Pump Head Curve

System Curve 

Non-stable Pump Head Curve
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Literature study / possible limitations

• HBEP = 25 m, QBEP = 298 m³/h bzw 82.8 l /s, n = 3500 rpm

• Max. wet diameter Da to 172mm

𝑛𝑞 = 𝑛
𝑄𝐵𝐸𝑃

𝐻𝐵𝐸𝑃
ൗ3

4
= 3500

0.0828

25 ൗ3
4

= 90 𝜓 =
2 ∙ 𝑔 ∙ 𝐻

𝑢2
=

2 ∙ 9.81 ∙ 25

0.1475 ∙ 𝜋 ∙
3500

60

2 = 0.67

Y = 0,67 @ nq = 90 can be treated as tough design specification

since for both references it is on the upper limit curve;

Gülich mentions to take the lower limit curve

if a stable head curve should be achieved

 In our design experience, the maximum permissible impeller diameter

for the given combination of Q, H and n is at the very low limit!

A study of reference pumps from different competitors revealed that no executed pump with a stable head curve under

these specifications (QBEP = 298 m³/h @ n = 3500 rpm with D2 ~ 150 mm) and could be found.

Source: Sulzer

Source: Gülich
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Hydraulic Design / Optimization Procedure

Challenges:

• No reliable design guidelines for

mixed flow pump diffusers

• Hardly any references for the given design 

targets such as

head curve stability and

limited size

• Satisfying demanding design targets

• Many degrees of freedom 

customized design procedure

Stepanoff, Gülich, 

Pfleiderer, competitors, 

papers

3D geometry model

Bladegen®

Simulation (CFD)

Pre-optimisation

„handmade“

Parametric 

3D geometry model

Ansys-Workbench

Automised

optimisation of 

selected parameters

Experimental

verification

on test rig

Final geometry

Meet the requirements

Meet the requirements

Yes
Yes, but further 

improvement

Yes

1D design

No 

No
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Parametric CAD-Model for Impeller and Diffuser

Parametric model for the complete hydraulic geometry

• meridional cross section

• blade shaping

more than 30 degrees of freedom was created.

• Multi-stage suitable; max. dimensions limited 

• Minimization of remaining swirl at pump exit

• Smooth flow deceleration;

Minimal flow separation but rapidly changing

meridional curvature (limited diameter);

• Strong influence on head curve stability

• Sensitivity analysis followed by

metamodel-assisted multi-objective

evolutionary optimization
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6 Impeller blades

7 Diffuser blades

5 mm wall thickness
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approx. 220K 

nodes per impeller 

passage

Diffuser:

7 blades
Impeller:

6 blades

approx. 350K nodes per diffuser passage

Numerical Meshes Impeller and Diffuser
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CFD Setup

Steady State simulations for optimization

• Single passage models A and B

• Full 360° Model C for verification

• SST turbulence model

• Aggressive time step (speed up calculation time)

• Approx. 15 (A) / 30 (B) minutes on 4 CPU cores;

8 h (C) on 16 CPU cores

• more than thousand different geometries investigated;

5 operating points for each geometry (to prove head curve stability)

Transient simulations 

• Full 360°model for all domains, SBES-SST turbulence model

• Before automated optimization + for final  geometry

• Approx. 5 to 6  days on 16 CPU cores

“Impeller only” CFD model A

for impeller design process
“Simple” CFD model B

for diffuser design process

Interface:

inlet / 

runner

Interface:

runner /

diffuser

Interface:

diffuser /

outlet

“360°” CFD model C for design verification
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Post-Processing
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evaluation 

plane: „out“

inlet-BC

5 x Deye

evaluation 

plane: „in“

evaluation plane:

in / runner

evaluation plane:

diffuser / out

outlet-BC

5 x Deye

evaluation plane:

runner / diffuser

no leakage loss, disc friction or mechanical 

(bearing, sealing) losses
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I01-58I01-46

I01-63

80 impeller designs were investigated further 

(out of approx. one thousand!);

Main focus on velocity distribution at impeller

inlet and outlet at part load operation

(stable head curve mandatory!)

3 examples were chosen in the design 

process for further diffuser design

Selected Impeller Designs from Optimization Process

pictures show

meridional velocity distribution

at Q = 50% QDesign
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The most challenging task was to find 

an impeller / diffuser combination with 

a stable head curve.

It turned out that in part load an increase 

of pump head beyond 30 m is not 

possible.

At least down to a flowrate of 

Q = 33 l /s (≙ 40% QDesign) the numerical 

results of the optimized design show a 

stable head / flowrate behaviour.

To achieve this head curve stability the 

best efficiency point is shifted to a flow 

rate above QDesign (approx. 120%)

Selected Diffuser Design from Optimization Process

meridional velocity @ QDesign
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1 stage simulation QDesign

left: meridional velocity

right: streamlinesBright green: simple model;

Coloured markers with black lines: full model 1 stage;

Blank markers with green lines: full model 2 stage;

2 stage simulation QDesign

top: meridional velocity

bottom: streamlines

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

35

0 0.02 0.04 0.06 0.08 0.1 0.12

Ef
fi

ci
e

n
cy

 h
C

FD
 [

%
]

H
e

ad
 H

 [
m

]

Flow Rate Q [m³/s]

Comparison of different CFD-models

efficiency

head



PUMPING FROM DEEP HOLES:  DEVELOPING OPTIMIZED HYDRAULIC DESIGNS
10. April 2024

-18-

30

40

50

60

70

80

90

100

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

h
C

FD
 [

%
]

Flow Rate Q [m³/s]

eta_IN+RU1-(I01-63_220K-D02_7_350K)

eta_Intake-(I01-63_220K-D02_7_350K)

eta_IN+RU1+DIF1-(I01-63_220K-D02_7_350K)

eta_IN+RU1+DIF1+RU2-(I01-63_220K-D02_7_350K)

eta_IEC-(I01-63_220K-D02_7_350K)

inflow losses

runner 1 losses

diffuser 2 losses

runner 2 losses

diffuser 1 losses

Loss analysis 2 stage-simulation

evaluation 

plane: „out“

evaluation 

plane: „in“

evaluation plane:

in / runner

evaluation plane:

diffuser / out

evaluation plane:

runner / diffuser

Streamlines @ 75% QDesign
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hub mid

shroud
vortex-

structures

Transient CFD: QDesign
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Transient CFD: Part-Load
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Pre-swirl suppression at part load with flow straightener at inlet
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• CFD-results confirm the achievement of the design targets

• Suction recirculation at deep part load was identified to be

responsible for head curve instability a flow rates < 50 % QDesign

– Simulations with Ribs / Flow straightener showed

the successful head curve stabilization when the

Part-load swirl can be suppressed

➢ In the multi-stage arrangement the diffuser blades

will operate as flow straightener for the following

stage

➢ The ribs in the pump inlet, which are necessary

anyway (for reasons of mechanical stability), can serve

as flow straighteners for the first pump stage 

Summary / Outlook: Hydraulic design
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Production Design – starting model

OD = 190.5mm or 7.5” distance between vane tips – 16.5mm 
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Production Design – step #1

OD = 200mm or 7.87” distance between vane tips – 56mm 
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Production Design – step #2

OD = 200mm or 7.87” distance between vane tips – 37mm 
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Production Design – step #3

OD = 200mm or 7.8” distance between vane tips – 40.5mm 
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Production Design – step #4

OD = 200mm or 7.64” distance between vane tips – 40.5mm 
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Production Design – step #5

OD = 200mm or 7.64” distance between vane tips – 43.5mm 
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Production Design – step #6

OD = 200mm or 7.64” distance between vane tips – 43.5mm 
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Production Design – Production Release

OD = 200mm or 7.64” distance between vane tips – 40.5mm 
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OD-GmbH 765-55000 (theoretical)
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OD-GmbH pump vs. Competition
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Production Design - FEA

Inner pressure acting on diffuser – 105Bar

Bending moment – 500Nm

Maximum temperature 160°C
Minimum temperature 50°C
Temperature gradient - 110°C
Axial thrust load 120kN
Motor weight below pump – 4T
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Production Design
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