PUMPING FROM DEEP HOLES: DEVELOPING **OPTIMIZED HYDRAULIC DESIGNS**

Graz, 10. April 2024

Andy Limanowka

Partner /

VP Engineering and Product Development a.limanowka@oildynamics.de

Innovative Artificial Lift Solutions

Stefan Höller

Senior Engineer Stefan.Hoeller@JabergundPartner.com

Prof. Dr. Jaberg und Partner GmbH Technologie und Strategie

Typical Geothermal Installation - String Diagram

DYNAMIC5 PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

Typical Geothermal Installation - String Diagram

Innovative Artificial Lift Solutions

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Typical Geothermal Installation - String Diagram

DYNAMIC5

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

Typical Geothermal Installation

Casing size: 10-3/4" with liner or,

9-5/8" without liner

Maximum acceptable pump diameter 7.7" 8.75" pumps are too large 6.75" pump cannot deliver required flow rate (36000BPD max)

Required production rates: winter 45000-50000BPD / 82.8-92[1/s] summer 15000-20000BPD / 27.6-36.8[1/s]

Production zone at 3000-4000m from surface Pump landed at 600-1000m from surface

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Pumps Available from Competition

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Initial Situation / Task / Goal

Hydraulic Specifications (n = 3500 rpm)

- Expected head per stage at BEP 25m
- Flow rate at BEP 298m³/h or 45,000bpd
- Expected efficiency at BEP would be close to 80%
- Continuously rising pump head is a must.
 Pump must be stable in whole range from no flow to no head conditions.
- No specifications concerning cavitation provided

Design specifications:

- Diffuser overall <u>diameter [OD]</u> must not bigger than 7-1/2" (190.5mm)
- Max. wet diameter D_a to 172mm

Innovative Artificial Lift Solutions

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Non-stable Pump Head Curve

System curve crosses the instability region: multiple intersections at different flow rates possible

Sudden jumps in flow rate can be described by multiple intersections of the pump head curve and the system resistance curve

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Literature study / possible limitations

- H_{BEP} = **25 m**, Q_{BEP} = 298 m³/h bzw 82.8 l /s, n = 3500 rpm
- Max. wet diameter D_a to 172mm

$$n_q = n \frac{\sqrt{Q_{BEP}}}{{H_{BEP}}^{3/4}} = 3500 \frac{\sqrt{0.0828}}{25^{3/4}} = 90 \qquad \psi = \frac{2 \cdot g \cdot H}{u^2} = \frac{2 \cdot 9.81 \cdot 25}{\left(0.1475 \cdot \pi \cdot \frac{3500}{60}\right)^2} = 0.67$$

 Ψ = 0,67 @ n_q = 90 can be treated as tough design specification since for both references it is on the upper limit curve;

Gülich mentions to take the lower limit curve if a stable head curve should be achieved

 \Rightarrow In our design experience, the maximum permissible impeller diameter for the given combination of Q, H and n is at the very low limit!

Hydraulic Design / Optimization Procedure

Innovative Artificial Lift Solutions

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Parametric CAD-Model for Impeller and Diffuser

Parametric model for the complete hydraulic geometry

- meridional cross section
- blade shaping

more than 30 degrees of freedom was created.

- Multi-stage suitable; max. dimensions limited
- Minimization of remaining swirl at pump exit
- Smooth flow deceleration; Minimal flow separation but rapidly changing meridional curvature (limited diameter);
- Strong influence on head curve stability
- Sensitivity analysis followed by metamodel-assisted multi-objective evolutionary optimization

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

10. April 2024

Numerical Meshes Impeller and Diffuser

Innovative Artificial Lift Solutions

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS 10. April 2024 -12-

CFD Setup

Steady State simulations for optimization

- Single passage models A and B
- Full 360° Model C for verification
- SST turbulence model
- Aggressive time step (speed up calculation time)
- Approx. 15 (A) / 30 (B) minutes on 4 CPU cores;
 8 h (C) on 16 CPU cores
- more than thousand different geometries investigated;
 5 operating points for each geometry (to prove head curve stability)

Transient simulations

- Full 360° model for all domains, SBES-SST turbulence model
- Before automated optimization + for final geometry
- Approx. 5 to 6 days on 16 CPU cores

Innovative Artificial Lift Solutions

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Post-Processing

Innovative Artificial Lift Solutions

1

10. April 2024

Selected Impeller Designs from Optimization Process

80 impeller designs were investigated further (out of approx. one thousand!);

Main focus on velocity distribution at impeller inlet and outlet at part load operation (stable head curve mandatory!)

101-58

101-63

3 examples were chosen in the design process for further diffuser design

Innovative Artificial Lift Solutions

I01-46

pictures show

at Q = 50% Q_{Design}

meridional velocity distribution

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Selected Diffuser Design from Optimization Process

The most challenging task was to find an impeller / diffuser combination with a stable head curve.

It turned out that in part load an increase of pump head beyond 30 m is not possible.

At least down to a flowrate of $Q = 33 \text{ I/s} (\triangleq 40\% \text{ } Q_{\text{Design}})$ the numerical results of the optimized design show a stable head / flowrate behaviour.

To achieve this head curve stability the best efficiency point is shifted to a flow rate above Q_{Design} (approx. 120%)

Innovative Artificial Lift Solutions

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

10. April 2024

-16-

Comparison of different CFD-models

Innovative Artificial Lift Solutions

Loss analysis 2 stage-simulation

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Streamlines reveal strong pre-swirl at part load

Innovative Artificial Lift Solutions

Transient CFD: Q_{Design}

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

Transient CFD: Part-Load

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

Pre-swirl suppression at part load with flow straightener at inlet

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Summary / Outlook: Hydraulic design

- CFD-results confirm the achievement of the design targets
- Suction recirculation at deep part load was identified to be responsible for head curve instability a flow rates < 50 % Q_{Design}
 - Simulations with Ribs / Flow straightener showed the successful head curve stabilization when the Part-load swirl can be suppressed
 - In the multi-stage arrangement the diffuser blades will operate as flow straightener for the following stage
 - The ribs in the pump inlet, which are necessary anyway (for reasons of mechanical stability), can serve as flow straighteners for the first pump stage

Innovative Artificial Lift Solutions

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Production Design – starting model

OD = 190.5mm or 7.5" distance between vane tips – 16.5mm

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

OD = 200 mm or 7.87" distance between vane tips – 56 mm

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

OD = 200 mm or 7.87" distance between vane tips -37 mm

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

OD = 200 mm or 7.8" distance between vane tips -40.5 mm

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

OD = 200 mm or 7.64" distance between vane tips -40.5 mm

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS 10. April 2024

OD = 200 mm or 7.64" distance between vane tips -43.5 mm

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

OD = 200 mm or 7.64" distance between vane tips -43.5 mm

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

Production Design – Production Release

OD = 200 mm or 7.64" distance between vane tips -40.5 mm

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Innovative Artificial Lift Solutions

OD-GmbH 765-55000 (theoretical)

DYNAMICS PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

OD-GmbH pump vs. Competition

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Production Design - FEA

Inner pressure acting on diffuser – 105Bar Bending moment – 500Nm Maximum temperature 160°C Minimum temperature 50°C Temperature gradient - 110°C Axial thrust load 120kN Motor weight below pump – 4T

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS

Production Design

Innovative Artificial Lift Solutions

PUMPING FROM DEEP HOLES: DEVELOPING OPTIMIZED HYDRAULIC DESIGNS 10. April 2024

